
DOI: 10.1007/s10910-006-9166-x
Journal of Mathematical Chemistry, Vol. 40, No. 3, October 2006 (© 2006)

Numerical solution for the Gross–Pitaevskii equation
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We solve the time-independent Gross–Pitaevskii (GP) equation which describes the
dilute Bose-condensed atoms in harmonic trap at zero temperature by symplectic shoot-
ing method (SSM). Both the repulsive nonlinearity and the attractive nonlinearity cases
are studied, and the bound state eigenvalues as well as the corresponding wavefunctions
are evaluated. We also present the numerical results by studying the time-dependent GP
equation, and comparisons are made between the results obtained by the time-indepen-
dent approach and the time-dependent approach.
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1. Introduction

Bose–Einstein condensate, which was predicted by Bose and Einstein in
1924, was realized experimentally for the first time in 1995. Its realization in
laboratory made profound impact in the theoretical research. At zero or suffi-
ciently low temperature, Bose–Einstein condensate can be described by a self-
consistent mean field equation, known as the Gross–Pitaevskii (GP) equation.
This equation has a form similar to the nonlinear Schrödinger equation (NSE)
[1], which incorporates the external potential as well as the interaction between
atoms properly. In order to assist laboratory research, many numerical tests have
been done, and good results are often reported. A simple and commonly studied
case is the 3D GP equation, which incorporates the interaction between atoms
and the spherically symmetric harmonic potential [2–4].

In section 2, we study the time-independent GP equation. This equation
can be transformed into Hamiltonian formalism, and then an effective method
to solve it is the structure-preserving method [5]. We transform the GP equation
into its dimensionless form [3], and apply the symplectic shooting method (SSM)
that combines the structure-preserving method and the shooting method to this
problem. The bound state eigenvalues and the corresponding wavefunctions for
both the repulsive nonlinearity and the attractive nonlinearity cases are worked
out in section 3. We also study the similar cases in [4], and present the bound
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state wave functions normalized to unity of the condensate. In section 4, we
study the time-dependent GP equation by Euler-centered scheme, and give out
the eigenvalues as well as the wavefunctions, and compare the results with those
obtained by the time-independent approach. Conclusions are given in section 5.

2. Time-independent GP equation and the numerical method

The time-independent GP equation for neutral atoms in 3D spherically har-
monic potential trap can be written as,[

−
–h2

2m
∇2 + V (r) + NU0 |ψ(�r)|2

]
ψ (�r) = µψ(�r), (1)

where, V (r) = mω2
t r2/2 is the spherical harmonic trap, m the mass of a single

atom, ωt the angular frequency of the trap, and N is the number of atoms in
the condensate. ψ(�r) is the ‘wavefunction’ of the condensate, and µ is the chem-
ical potential. U0 = 4π–h2as/m represents the interaction between atoms, and as
is the scattering length. Since this approximation is valid at sufficiently low ener-
gies, it is enough to consider only the s-wave scattering between atoms [2]. When
as > 0, the interaction between atoms is repulsive, it is positive to obtain sta-
ble condensates. When as < 0, the interaction between atoms is attractive, it is
negative to obtain stable condensates. When the absolute value of the negative
scattering length reaches a critical value, it can not support a stable solution. In
dilute Bose gases, the condition that |as| /d � 1 can be satisfied very well, where
d is the average distance between atoms. Just under this condition, the poseudo-
potential U0 which is proportional to the scattering length can be used safely to
describe the interaction between atoms.

If the following harmonic oscillator units are used,

r = [–h/2mωt]1/2 x, β = µ/–hωt

and take

ψ (r) = 1√
4π [–h/2mωt]3/4

� (x)

x

the dimensionless form of equation (1) reads[
− d2

dx2
+ x2

4
+ α

�2 (x)

x2
− β

]
� (x) = 0 (2)

and the normalization condition is

4π

∫ ∞

0
ψ

2 (r) r2dr =
∫ ∞

0
�2 (x) dx = 1. (3)
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In equation (2), α = 2Nas/[–h/2mωt]1/2 is the nonlinear coefficient. We rewrite
equation (2) into a system of ODEs,

d� (x)

dx
= −

[
β − x2

4
− α

�2 (x)

x2

]
� (x) = f (�, x), (4)

d� (x)

dx
= � (x) = g(�). (5)

If we take x as the ‘time’ variable, � (x) the general position, and � (x) the gen-
eral velocity, it is easy to see that the system equation (4), (5) is of the form of
Hamiltonian equation which is a separable Hamiltonian system. The Hamilto-
nian function can be written as follows,

H = �2 (x)

2
+ 1

2

[
− x2

4
+ β

]
�2 (x) − 1

4
α

�4 (x)

x2
. (6)

So, the reliable method for this kind of problem is the structure-preserving
method. Many symplectic schemes have been applied in solving time-independent
Schrödinger equation [6–9]. In this paper, we adopt the fourth-order explicit
symplectic scheme to solve equations (4) and (5). The 4-stage fourth-order
explicit symlectic scheme reads [9]:

p1 = �n + c1h f (�n, xn), q1 = �n + d1hg(p1),

x1 = xn + d1h,

p2 = p1 + c2h f (q1, x1), q2 = q1 + d2hg(p2),

x2 = x1 + d2h,

p3 = p2 + c3h f (q2, x2), q3 = q2 + d3hg(p3),

x3 = x2 + d3h,

�n+1 = p3 + c4h f (q3, x3), �n+1 = q3 + d4hg(�n+1),

xn+1 = x3 + d4h = xn + h, (7)

where c1 = c4 = α/2, c2 = c3 = (α + β)/2, d1 = d3 = α, d2 = β, d4 = 0 and
α = (

2 − 21/3
)−1

, β = 1 − 2α.
Shooting method is a popular method to solve boundary value prob-

lems, and it aims at converting the boundary value problem into an initial
value problem. We use the SSM that combines the structure-preserving method
and the shooting method to this problem. We adopt the well-known boundary
conditions [4]. When x ∼ 0, �(x)/x tends to a limit, then � (0) = 0. When x ∼
∞, the nonlinear term in equation (2) vanishes, and then equation (2) reduced
to the form of the plain harmonic oscillator equation which has two analytical
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solutions. Select the one that vanishes at sufficiently large distance, and work out
its derivative, the well-known boundary conditions are,

x ∼ 0, � (ε) = ε�′(0) ,
(
ε = 10−6

)
, (8)

�′ (0) unknow,

x ∼ ∞, � (x)asym = C exp

(
− x2

4
+

(
β − 1

2

)
ln (x)

)
, (9)

�′ (x)asym = C

(
− x

2
+

(
β − 1

2

)
1
x

)
exp

(
− x2

4
+

(
β − 1

2

)
ln (x)

)
. (10)

We take the right boundary at sufficiently large distance as xmax, and at xmax,
the numerical solution of equations (4) and (5), �(x)num and �′(x)num, should
satisfy the following condition,

�(x)num

�′(x)num
= �(x)asym

�′(x)asym
=

[
− x

2
+

[
β − 1

2

]
1
x

]−1

. (11)

Taking into consideration the normalization of the NSE, the criterion for our
SSM at xmax is taken to be,∣∣∣∣∣� (x)num − �′ (x)num

[
− x

2
+

[
β − 1

2

]
1
x

]−1
∣∣∣∣∣ < ε1

(
ε1 = 10−10

)
, (12)

∣∣∣∣∣∣
∞∫

0

�2 (x)num dx − 1

∣∣∣∣∣∣ < ε2

(
ε2 = 10−5

)
, (13)

where ε1 and ε2 are the accuracy in our numerical computation.
We solve the time-independent NSE with existence of an external potential

by the general method presented in [3]. Given a nonlinear coefficient α, we take
�′ (0) and β as variables, and then apply the SSM.

For certain �′ (0), we let β run in a large range (choosing the appropri-
ate searching range of β is guided by the cases of harmonic oscillator equation),
and propagate the solution of equation (2) out to xmax by the explicit symplectic
method stated above, and the numerical solutions at xmax are examined by the cri-
terion of equations (12) and (13). Then we let �′ (0) go one-step forward, ��′ (0),
again let β run in the large range to test whether they are the desired �′ (0) and
β, and so on. That means we are doing SSM in the plane of �′ (0) and β. Only
when the proper values of �′ (0) and β are reached, the corresponding numerical
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solutions at xmax can satisfy both equations (12) and (13). Meanwhile, the eigen-
values and the corresponding wavefunctions normalized to unity are obtained.
All this means that the general method is practiced in the plane of �′ (0) and β,
so the computation cost is considerably high. From our experience in computa-
tion we find that ε1 in equations (12) behaved linearly, and that ε2 in equation
(13) largely behaved linearly too. It is promising! These two phenomenons moti-
vate us to apply half-interval method to both variable �′ (0) and variable β. As
consequences of the utilization of half-interval method, we can choose relatively
larger steps �β and ��′ (0). Undoubtedly that will save much computation cost,
and make our computation stable, and furthermore, it gives advantages to attain
higher accuracy. We hasten to add that we are not searching in large ranges blind-
fold, and we are guided by the cases of the harmonic oscillator equation.

3. Numerical results

We practice the method to the problem stated above and obtain the eigen-
values and the corresponding wavefunctions for the condensate at zero tempera-
ture as below.

3.1. The repulsive nonlinearity

In the repulsive nonlinearity cases (α > 0), the solutions of the conden-
sate are stable. Let α range in 0–50, we work out the ground state eigenvalues
and the first excited state eigenvalues as well as the corresponding wavefunctions,
which are displayed, respectively, in figures 1–3. For convenience we choose the
scaling as follows: horizontal axis to be x , and vertical axis to be � (x)/x . As
can be seen from figures 1 and 2, the condensate expands with the increasing
of α. There is a node in the wavefunction of the first excited state. It can be
seen clearly in figure 3 that the problem reduced to the harmonic oscillator cases
when α = 0, and the plain eigenvalues 1.5 and 3.5 are obtained (Since x ∼ 0,
� (0) = 0, the principle quantum number n can only chose odd number). Gen-
erally, we set h = 10−2, �β = 10−4, and ��′ (0) = 10−2 in our computation. We
set �β = 10−5 when the nonlinear coefficient is larger (i.e. α = 50 ). For ground
state wavefunctions we set xmax = 8, and xmax = 8 − 9 for the first excited state
wavefunctions. Our computation results are consistent with those of [3].

3.2. The attractive nonlinearity

In the attractive nonlinearity cases (α < 0), the solutions of the condensate
are not always stable. Since interactions between atoms are attractive now, the
absolute value of the nonlinear coefficient cannot increase without a limitation.
The ground state wavefunctions as α ranged in 0 to −1.6 are displayed in fig-
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Figure 1. The ground state wavefunctions of the condensate. The nonlinear coefficient is taken to
be 0.1, 1, 3, 5, 10, 15, 25, and 50 down the vertical axis. Horizontal axis is x , and vertical axis is

� (x)/x .

Figure 2. The first excited state wavefunctions of the condensate. The nonlinear coefficient is taken
to be 0.1, 1, 3, 5, 10, 15, 25, and 50 down the vertical axis. Horizontal axis is x , and vertical axis is

� (x)/x .

ure 4. It can be seen from figure 4 that the condensate peaks with the increas-
ing of the absolute value of the nonlinear coefficient. Here, we set xmax = 7. We
also give out the picture of the boundary value �′ (0) via α, the latter ranges in
−1.6–50, as displayed in figure 5. The picture corresponding to the positive part
of α largely coincides with that of [3].



W. Hua et al. / Numerical solution for the Gross–Pitaevskii equation 249

Figure 3. The evolution of the eigenvalues of the ground state (n = 1) and the first excited state
(n = 3) with the nonlinear coefficient. Horizontal axis is α, and vertical axis is β. n is the principle

quantum number.

Figure 4. The ground state wavefunctions of the condensate. The nonlinear coefficient is taken to
be −1.6, −1.2, −0.8, and −0.4 down the vertical axis. Horizontal axis is x , and vertical axis is

� (x)/x .

In order to test our SSM further, we study the similar case in [4] that deals
with the very stationary NSE but concentrates on the cases of attractive non-
linearity. This literature presents another way of normalization that saves much
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Figure 5. Boundary value �′(0) via α. α is taken to be in −1.6–50.

computation. The equation in [4] is

[
− d2

dx2
+ 1

4
x2 − |� (x)|2

x2

]
�(x) = β�(x), (14)

∫ ∞

0
|� (x)|2 dx = n, (15)

n = 2N |as|
√

2mωt
–h

, (16)

where n is a real number related to the number of atoms N . The author pointed
out that n is given out as the nonlinear coefficient

∣∣C3D
nl

∣∣ of [2]. In our paper for
the attractive nonlinearity cases, we have −n = α. We list part of their results [4]
in the first three columns of table 1. It can be seen that for given β, they worked
out the corresponding n. Recall that −n = α, on the premise of the same condi-
tions that are adopted in our computation, for certain α, we can work out the
related β. So we do our computation on the basis of −n, and the results are
listed in the last three columns in table 1. We set xmax = 7. On the whole the
results of the two methods coincide very well except one point n = −1.6237.
By further computation we found out that the nonlinear coefficient should
be −1.6112 corresponding to β = 0.2. Furthermore, we display the ground state
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Table 1
The first three columns are the results of [4], and the last three columns are our computation results.

β �′(0) −n α �′(0) β

1.5 0 0 0 0.89325 1.50000
1.4 0.5448721 −0.3310 −0.3310 0.94703 1.40000
1.2 0.9939222 −0.8597 −0.8597 1.07195 1.20000
1.0 1.3567267 −1.2282 −1.2282 1.22406 1.00009
0.8 1.7022822 −1.4607 −1.4607 1.40844 0.80003
0.6 2.0495486 −1.5839 −1.5839 1.62844 0.60006
0.4 2.4045809 −1.6254 −1.6254 1.88594 0.40009
0.2 2.5851166 −1.6237 −1.6237 2.03008 0.29906
0.0 3.1340461 −1.5632 −1.5632 2.50742 −0.00050

−1.0 4.8924036 −1.2234 −1.2234 4.42383 −1.00041
−2.0 6.3914678 −0.9843 −0.9843 6.44258 −2.00026

Figure 6. The ground state wavefunctions of the condensate of the attractive nonlinearity cases. β

is taken to be −2.0, −1.0, 0.0, 0.4, 0.8, 1.2 down the vertical axis. Horizontal axis is x , and vertical
axis is �(x) /x .

wavefunctions normalized to unity in figure 6. In figure 6, we can see clearly the
shape of the condensates corresponding to different values of β. But the stability
of the wavefunctions corresponds to the negative eigenvalues is doubtful.

4. Time-dependent GP equation and the numerical method

For neutral atoms in 3D spherically harmonic potential trap, the time-
dependent GP equation reads
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[
−

–h2

2m
∇2 + 1

2
mω2

t r2 + NU0 |ψ(�r , t)|2
]

ψ(�r , t) = i–h
∂ψ(�r , t)

∂t
, (17)

∫
|ψ (�r , t)|2 d�r = 1. (18)

The wavefunction can be written as

ψ(�r , t) ≡ ψ(r, t) = ψ(r) exp(−iµt/–h).

Equations (17) and (18) can be rescaled by r = [–h/2mωt]1/2 x , t = τωt into the
dimensionless form[

− ∂2

∂x2
+ x2

4
+ α

|�(x, τ )|2
x2

]
�(x, τ ) = i

∂�(x, τ )

∂τ
, (19)

∫ ∞

0
|�(x, τ )|2 dx = 1, (20)

where

ψ(r, t) = 1√
4π [–h/2mωt]3/4

�(x, τ )

x
, β = µ/–hωt, �(x, τ ) = �(x) exp(−iβτ).

α = 2Nas/[–h/2mωt]1/2

is the nonlinear coefficient.
If we write the wavefunction in terms of its real and imagine parts sepa-

rately as �(x, τ ) = a(x, τ ) + ib(x, τ ), equation (19) becomes

ȧ = −bxx + x2

4
b + g

(a2 + b2)

x2
b, (21)

ḃ = −
[
−axx + x2

4
a + g

(a2 + b2)

x2
a

]
(22)

and further becomes

ȧ j = − 1
h2

[
b j+1 − 2b j + b j−1

] + x2
j

4
b j + g

(a2
j + b2

j )

x2
j

b j , (23)

ḃ j = −
[
− 1

h2

[
a j+1 − 2a j + a j−1

] + x2
j

4
a j + g

(a2
j + b2

j )

x2
j

a j

]
, (24)
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where they are discretized in space by central difference, j = 0, . . . , N . We take
the boundary conditions to be

x → 0, �(ε, τ ) = 0, ε = 10−6, x → ∞, �(x, τ ) = 0. (25)

It can be verified that equations (23) and (24) are of the form of Hamiltonian
equation, and the Hamiltonian function is

H = 1
2h2

N−1∑
j=1

[
b j (b j+1 − 2b j + b j−1) + a j (a j+1 − 2a j + a j−1)

]

+
N−1∑
j=1

[
x2

j

8
(a2

j + b2
j ) + g

4x2
j

(a4
j + b4

j ) + g

2x2
j

a2
j b

2
j

]
. (26)

Therefore, we can apply symplecic algorithm in solving this equations, such as
the Euler-centered scheme or the symplectic RK scheme. We adopt the Euler-
centered scheme

zk+1 = zk + τ J−1(∇ H)(zk+1+zk)/2. (27)

The normalization condition is naturally preserved.
For ground state solution of the condensate, we start with the following

normalized analytically known ground state solution of equation (19) with α = 0

�(x, 0) = 2−0.5(2π)−0.252x exp

(
− x2

4

)
(28)

as the initial input.
We begin the iteration by the equation with α = 0, and then at each time

step �τ = 10−3, α is slowly increased by �α = 10−5, the same boundary condi-
tion is implemented and convergence is required. When the desired α is reached,
the wavefunction is propagated in time, and the stability of the wavefunction is
tested, and the corresponding eigenvalue is calculated [1]. Space step is h = 0.1.
The wavefunctions obtained are presented in figure 7, and the eigenvalues calcu-
lated with h = 0.1 and h = 0.01 for different nonlinear coefficient are displayed
in table 2. It can be seen clearly that the energies calculated agree well with those
obtained by the time-independent approach in section 3.

5. Conclusions

In this paper, we study the time-independent GP equation, which describes
the stationary states for neutral atoms in a spherical harmonic trap. Since it is
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Figure 7. The ground state wavefunctions obtained by the time-dependent approach. α is taken to
be 1, 50, 100, and 150 down the vertical axis. Horizontal axis is x , and vertical axis is �(x) /x .

Table 2
Comparison of the eigenvalues calculated by the time-independent approach and the

time-dependent approach.

α 1 3 10 15 25 50

βh=0.01
time−independent 1.74147 2.09148 2.86105 3.24668 3.84852 4.91831

βh=0.01
time−dependent 1.74146 2.09141 2.86103 3.24655 3.84873 4.91846

βh=0.1
time−dependent 1.74107 2.09136 2.86104 3.24678 3.84865 4.91797

a Hamiltonian system, and has symplectic structure, so the structure-preserv-
ing method is an efficient method to solve this kind of problem. By the gen-
eral method presented in literature and the well-known boundary conditions, we
apply SSM accompanied by the half-interval method to this Hamiltonian sys-
tem. Both the repulsive nonlinearity and the attractive nonlinearity cases are
considered, and the eigenvalues and the corresponding wavefunctions of the con-
densate are given. We also study the time-dependent GP equation, and give out
the results by the Euler-centered scheme, which is a symplectic algorithm too.
It is assured that our method is reliable and efficient from the computation
results.
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